These sorting algorithms are classified by their efficiency increasing.
1. Selection sort
Select the smallest —> swap with the first item in list.
function selectionSort(arr) {
const len = arr.length;
for (let i = 0; i < len - 1; i++) {
let minIndex = i;
// find the index of the minimum
for (let j = i + 1; j < len; j++) {
if (arr[j] < arr[minIndex]) {
minIndex = j;
}
}
// swap the minimum value with the first element
if (minIndex !== i) {
[arr[i], arr[minIndex]] = [arr[minIndex], arr[i]];
}
}
return arr;
}
Space Complexity: O(n) - Time Complexity: O(n2)
2. Bubble sort
Traverse a list, compare 2 adjacent —> swap.
function bubbleSort(arr) {
const len = arr.length;
for (let i = 0; i < len; i++) {
for (let j = i; j < len; j++) {
if (arr[j] < arr[i]) {
[arr[i], arr[j]] = [arr[j], arr[i]];
}
}
}
return arr;
}
Space Complexity: O(1) - Time Complexity: O(n2)
3. Insertion sort
Choose the key
(usually index 1). Compare key
with previous
.
If previous
> key
—> shift previous
to the right and keep continue until previous
<= key
.
Then, increase key
index.
Copy;
function insertionSort(arr) {
const len = arr.length;
for (let i = 1; i < len; i++) {
const key = arr[i];
let j = i - 1;
// shift elements that are larger than key to the right
while (j >= 0 && arr[j] > key) {
arr[j + 1] = arr[j];
j--;
}
arr[j + 1] = key;
}
return arr;
}
Space Complexity: O(1) - Time Complexity: O(n2).
4. Merge sort
Divide and Conquer algorithm.
- Divide the array into two halves.
- Sort the left half and the right half using the same recurring algorithm.
- Merge the sorted halves.
function mergeSort(arr) {
const len = arr.length;
if (len <= 1) {
return arr;
}
const mid = Math.floor(len / 2);
const left = arr.slice(0, mid);
const right = arr.slice(mid);
return merge(mergeSort(left), mergeSort(right));
}
function merge(left, right) {
const result = [];
while (left.length && right.length) {
if (left[0] <= right[0]) {
result.push(left.shift());
} else {
result.push(right.shift());
}
}
return result.concat(left, right);
}
Space Complexity: O(n) - Time Complexity: O(n*log(n)).
5. Quick sort
Divide and Conquer algorithm.
- Choose
pivot
(usually last index). - Partitioning: sort all elements less than
pivot
—>left
, greater thanpivot
—>right
. - Call Quicksort recursively.
function quickSort(arr) {
if (arr.length <= 1) {
return arr;
}
const pivotIndex = arr.length - 1;
let i = 0;
for (let j = 0; j < pivotIndex; j++) {
if (arr[j] < arr[pivotIndex]) {
[arr[i], arr[j]] = [arr[j], arr[i]];
i++;
}
}
[arr[i], arr[pivotIndex]] = [arr[pivotIndex], arr[i]];
const left = arr.slice(0, i);
const right = arr.slice(i + 1);
return quickSort(left).concat(arr[i], quickSort(right));
}
Space Complexity: O(log(n)) - Time Complexity: O(n*log(n)).
There’re many other sorting algorithms such as: Heap sort, Counting sort, Radix sort, Bucket sort.
Refs:
https://www.freecodecamp.org/news/sorting-algorithms-explained-with-examples-in-python-java-and-c/